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Abstract

This paper describes an approach for using several lev-
els of data fusion in the domain of autonomous off-road
navigation. We are focusing on outdoor obstacle detection,
and we present techniques that leverage on data fusion and
machine learning for increasing the reliability of obstacle
detection systems.

We are combining color and IR imagery with range in-
formation from a laser range finder. We show that in addi-
tion to fusing data at the pixel level, performing high level
classifier fusion is beneficial in our domain. Our general
approach is to use machine learning techniques for auto-
matically deriving effective models of the classes of inter-
est (obstacle and non-obstacle for example). We train clas-
sifiers on different subsets of the features we extract from
our sensor suite and show how different classifier fusion
schemes can be applied for obtaining a multiple classifier
system that is more robust than any of the classifiers pre-
sented as input.

We present experimental results we obtained on data
collected with both the Experimental Unmanned Vehicle
(XUV) and a CMU developed robotic vehicle.

1. Introduction

Numerous military and civilian applications call for de-
pendable autonomous vehicles that can navigate off-road.
Robotic vehicles can help remove people from dangerous
missions, can reduce costs and the time required for deploy-
ment. One of the more challenging aspects of autonomous
navigation is perception in unstructured or weakly struc-
tured outdoor environments such as forests, small dirt roads
and terrain covered by tall vegetation. We focus on obstacle
detection, where we consider an obstacle to be any region
that a vehicle should not attempt to traverse (e.g. humans,

trees, big rocks, large holes, large amounts of water). Un-
fortunately, the difficulty of the problem is such that even
human performance in this domain is not perfect.

We believe that in order to achieve acceptable levels of
autonomy, vehicles operating in off-road conditions will
need to rely on redundancies both at the sensor level and
in the decision-making process. Essentially, obstacle detec-
tion can be seen as an inference problem: there exists no
sensor that will directly indicate if a region in space is an
obstacle or not. As a result, we will need to use the avail-
able information about such a region to infer if it is safe
to traverse it or not. Intuitively it should be the case that
having more information should lead to better inferences,
which translate in turn to higher degrees of reliability of the
obstacle detection system.

Another reason for which outdoor navigation should
benefit from having several sensing modalities is that their
failure modes are often different. Even if a good qual-
ity color image can generally provide a lot of information,
limitations in the dynamic range of existing cameras make
it hard to extract information from images which contain
shadows and bright spots, or from images taken at dusk or
dawn. A laser range finder is not sensitive to such issues.
Similarly, there are times of the day when an infrared cam-
era - which can normally provide great information for de-
tecting humans, water and vegetation - does not produce
very useful information. A more diverse set of sensing
modalities would increase the chances that at least some of
the sensors can produce useful information allowing the au-
tonomous vehicle to pursue its mission.

In addition to data fusion, our approach relies quite heav-
ily on machine learning. Detecting obstacles in environ-
ments that are as complex as the ones we are considering re-
quires complex decision schemes which involve large num-
bers of parameters. Deriving such schemes manually can
be an extremely tedious process. We believe that manu-
ally “optimizing” the performance of a system with many
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parameters is not a satisfactory solution.We would like our
robots to be easily adaptable to new environments and oper-
ating conditions, and for this purpose we will use automated
methods for tuning our systems.

Using several sensing modalities or machine learning are
certainly not new ideas in the mobile robaotics field. A quick
look at the previous work shows that sensor fusion has been
a constant presence in this area from the earliest mobile
robots to the plaforms that define the current state of the
art. Begining with the indoor HILARE robot in 1979 [7],
Moravec’s Stanford Cart and CMU Rover ([14], 1983) and
continuing with the outdoors Ground Surveillance Robot
[10, 9], the Autonomous Land Vehicle [5], the NAVLAB
series of autonomous vehicles [22, 8] and the Demo I-11-111
project [23], numerous groups have used sonars, TV cam-
eras, IR sensors, contact switches and laser range finders in
order to tackle the obstacle detection problem.

In 1992, Pomerleau [17] demonstrated the first success-
ful application of machine learning methods to the problem
of mobile robot navigation. Soon after Davis and Stentz [6]
proposed the MAMMOTH system which employed a neu-
ral network to learn how to combine steering angles pro-
duced by other neural networks using image and laser data.

It is interesting to contrast the machine learning tech-
niques used in early robotic systems such as NAVLAB to
more recent approaches such as the Demo |11 project [1].
While the early systems tried to achieve autonomy by solv-
ing one monolithic learning problem (training a neural net-
work to map from grey level images to steering angles in the
case of Pomerleau’s ALVINN [17]), more recently the trend
has been to make intensive use of human domain knowledge
and only use learning for those aspects of the problem that
are hard to pre-program. For example, in [1] the authors de-
scribe a system which uses manually derived rules to iden-
tify geometric obstacles, and then filters the results through
a color-based classifier that tries to identify the false geo-
metric obstacles caused by vegetation. This latter classifier
is trained by fitting a mixture of Gaussians to humanly la-
beled data.

The approach we propose is located somewhere between
the two extremes we just described. We believe that in
certain cases it is a good idea to try to go directly from
low-level data to an obstacle/non-obstacle decision but we
would also like to be able to improve our results by us-
ing classifiers produced by human experts. Essentially, we
would like to build a “black-box” in which we can feed our
data and some other classifiers (trained or pre-programmed,
that solve the entire obstacle detection problem or just part
of it). The black-box should combine its inputs in such a
way that the obstacle/non-obstacle decisions it produces as
an output are more likely to be correct than those of any
other classifier provided as an input. In this paper we will
present results based on several classifier combination tech-

niques and show that such a black-box can be built in prac-
tice.

In the following sections we will describe in more detail
our problem setup (section 2) and the fusion techniques we
have experimented with (section 3). In section 4 we present
our experimental results and we draw conclusions and dis-
cuss future research directions in section 5.

2. Problem Setup

Considering the large variety of sensing equipment used
in outdoor mobile robotics, we will attempt to describe the
main assumptions we make about the robotic platform.

Two elements are important for our approach: we as-
sume that the robot is equipped with some form of 3D
range sensing (such as a laser range finder or a stereo vi-
sion setup), and that it has relatively good pose estimation.
The pose estimation requirement can be relaxed, since it is
only required for accumulating sensor data over time as the
robot moves. In the worst case in which no pose estima-
tion is available, we could still attempt to navigate using a
“blindfolded robot” approach: we can ignore all history and
make all decisions based on current data.

In addition to range sensing it is frequently the case that
robots are equipped with some cameras (e.g. color, black
and white, infrared). Our goal will be to combine the range
and camera data in order to perform reliable outdoor obsta-
cle detection.

2.1. Data Association

Fusing multisensor data at low-level requires solving the
data association problem, which consists of establishing
correspondences between the measurements returned by the
different sensors. In our case we will need to find such cor-
respondences between our laser data and the images from
the color and IR cameras.

The initial step of our calibration procedure consists in
determining the intrinsic paramters of our color and IR cam-
eras, for which we use the Matlab Camera Calibration Tool-
box ([3]). A relatively simple laser-camera calibration pro-
cess — consisting of extracting the corners of a checkerboard
calibration target in both the laser data and our images — al-
lows us to recover the 3D transformation between the refer-
ence frame attached to the laser range finder and the frame
of each camera. Using this transformation we can transform
all the range measurements from the laser to the camera
frames and then use the intrinsic parameters of our cam-
eras in order to find the pixel coordinates where each 3D
measurement should project. Thus, for all the laser points
that happen to be in the field of view of our cameras we can
obtain color and IR information.



Note that if we assume that the position of our robot in a
fixed world frame is known we can accumulate laser points
expressed in this frame. When a new set of images is cap-
tured we can transform these points to the current frame of
the cameras and obtain image information for all the accu-
mulated points that are visible.

2.2. Obstacle Detection as a Classification Problem

Assuming that the data association step is completed,
there is a choice regarding the space in which we will per-
form obstacle detection: we can use the 3D space or the
image space.

Using a 3D voxel representation for our analysis requires
a mapping of the features extracted from images to 3D lo-
cations in the world. Using the 3D coordinates of the laser
points that project close to a certain location in the image we
can map the image properties extracted from that small area
to a specific voxel in the 3D representation. The 3D voxels
can then be classified as obstacle/non-obstacle voxels using
their laser and image-based features.

Performing the analysis in the image space requires the
opposite process: one of the images selected as reference
is divided into a grid of rectangular patches and all the
available 3D measurements are projected into it. Each im-
age patch will contain zero or more laser points, which we
can use to extract “laser features” such as range statistics
or height in the vehicle frame. The laser features together
with the image features (such as texture and color statistics)
are the inputs to a classifier which will decide if the image
patches as corresponding to an obstacle in the scene or not.
The 3D points that project into each patch can be used to
estimate the locations of the patches classified as obstacles,
a step necessary for obstacle avoidance.

While the two representation models are essentially
equivalent, we have chosen to use the image space clas-
sification which is more convenient for both labeling data
and visualization of the classification results. This is not a
limiting factor for the obstacle detection algorithms that we
can use in our classifier fusion approach: any labeling of 3D
voxels can be converted to a labeling of image patches and
vice-versa.

The setup we have presented reduces the problem of ob-
stacle detection to the one of binary classification of im-
age patches in the obstacle/non-obstacle classes. For each
image patch we extract color, texture, IR and various laser
statistics features which can be used as inputs to our classi-
fication methods.

The learning methods used for the experiments presented
in this paper are all supervised algorithms. We produce
manually labeled data by selecting area of interest in im-
ages and classifying them as obstacles or non-obstacles.

3. Classifier Fusion
3.1. Motivation

We have described a method for extracting informa-
tion (or “features”) from several different sensors and using
them as inputs to classification algorithms. If we reduced
ourselves to simply concatenating all the feature vectors we
would essentially perform a simple form of data fusion at
the pixel (or more precisely image patch) level. In many
mobile robotics applications it is beneficial to be able to
also include already existing classifiers that might incorpo-
rate significant amounts of domain knowledge. As we have
stated in the introduction, we would like to have the capa-
bility to automatically learn when to use certain classifiers
and how to combine them with and based on the available
input data.

The reasons for which classifier combination might be
desirable in robotics applications include:

e Several research groups might work on obstacle de-
tection algorithms, making possibly different assump-
tions about the scene and about the sensors. It is
likely that the failure modes of their algorithms will be
slightly different, which leads to the question whether
by aggregating the decisions of all the classifiers in the
pool we could do better on average than any individual
algorithm.

e Certain types of obstacles can be particularly difficult
to detect: thin wires and negative obstacles (such as
holes and trenches) are good examples. While in such
cases it might hard to implement a general obstacle
detection algorithm that “learns” how to detect them,
human understanding of the constraints specific to the
obstacle to be detected can lead to much more effective
specialized detectors. Learning classifier fusion auto-
matically would enable us to determine the weights
and rules that should be used with such specialized
classifiers without manually tuning parameters based
on their false alarms and detection rates.

3.2. Algorithms

In this paper we will discuss three algorithms for classi-
fier combination: committees of experts ([15, 2]), stacked
generalization ([27]) and a slight variation of the AdaBoost
algorithm ([20]. While our classifier fusion experiments are
not limited to these specific algorithms, we consider them to
be different enough from each other to be representative for
the results one could expect from applying classifier fusion
in our domain.



1. Commitees of Experts

Initially described as a method for improving regres-
sion estimates in [16, 15], a committee of experts can
be used for both regression and classification. The
idea behind the algorithm is simple: if we have a
pool of L experts that estimate a target function f(x),
we can linearly combine their outputs as focor(z) =
Zle a; fi(x), where f;(x) is the estimate produced
by the i*" expert. Under this model it can easily be
shown [16, 15, 2] that the optimal (in the mean squared
error sense) «;’s are given by

_ XL(C Yy
i X (C g
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where C is the error correlation matrix. It can be
shown that the mean squared error of the committee
is always smaller than or equal to the average mean
squared error over the classifier pool. In fact, if we
assume that the experts make uncorrelated zero mean
errors the error decreases by at least a factor of L. Ob-
viously, this is overly optimistic: in reality the errors
of the classifiers are going to be correlated so the re-
duction in error will be much smaller. However, given
the simplicity of the method it is very attractive to use
it. The assumption that needs to be made for the COE
fusion approach is that the classifiers in the pool are
trying to solve the same problem. As a result, this tech-
nique has the limitation of not being able to support
specialized classifiers.

. Stacked Generalization

Introduced by Wolpert in 1990 [27], stacked gener-
alization (or “stacking”) was initially presented as a
method for combining multiple models learned for
classification. Since then, stacking has also been used
for regression [4] and even unsupervised learning [24].

Despite being an extremely simple algorithm, stacked
generalization is quite difficult to describe. To make
the task easier, we describe what stacked generaliza-
tion (SG) would be equivalent to if we are willing to
assume that a very large amount of training data is
available, and then explain the actual algorithm.

In the form described by Wolpert in [27], stacked gen-
eralization is a two stage classifier. Just like in the case
of committees of experts we will assume that we have
apool of L trainable experts that estimate a target func-
tion f(x). These classifiers are what Wolpert calls the
“level-0 generalizers”, and are trained in the first stage
of SG. The second stage consists of training a classifier
that takes as inputs the outputs of the level-0 generaliz-
ers and tries to produce the correct label as an output.

This classifier is called the “level-1 generalizer”, and
its purpose is to learn the biases of the level-0 general-
izers.

The crucial element of stacked generalization is that
the level-1 generalizer should be trained using data that
is “new” to the level-0 generalizers, since we are inter-
ested in learning about their generalization properties
and not their ability to overfit. In the ideal case where
very large amounts of training data were available, this
could simply be achieved by splitting the training data
and reserving half of it (for example) for training the
second stage classifier. The only difference about the
stacked generalization algorithm and the method we
just described is that in the real algorithm a cross-
validation scheme is used so that all the data is used
for training both stages of the classifier.

Stacked generalization works surprisingly well in
practice, and it has been applied successfully in other
domains such as ATR ([26]).

. AdaBoost with Classifier Selection

AdaBoost is an algorithm that has been shown to be
somewhat similar to the popular support vector ma-
chines, in that it tries to maximize the separation mar-
gin. Shapire and Freund [20] proposed a clever iter-
ative algorithm that solves the margin maximization
problem with the only requirement that a so-called
“weak classifier” —a learning algorithm that can per-
form better than a random one- is available.

The intuitive idea behind AdaBoost is to train a se-
ries of classifiers and to iteratively focus on the hard
training examples. The algorithm relies on continu-
ously changing the weights of its training examples so
that those that are frequently misclassified get higher
and higher weights: this way, new classifiers that are
added to the ensemble are more likely to classify those
hard examples correctly. Aside from this intuition, Ad-
aBoost’s training scheme corresponds to performing
gradient descent on an error function that exponen-
tially penalizes small classification margins [13, 21].

Our small variation to the regular form of Adaboost
consists in allowing the algorithm to choose at each it-
eration which type of weak classifier to train. Assum-
ing that we have a pool of classifiers and that some of
them can be trained, we allow the algorithm to examine
all the classifiers in our pool —training the ones that are
trainable— and select the one that can best classify the
training examples given their current weight distribu-
tion. Thus, AdaBoost will select one of the classifiers
available at each iteration.

Note that while this is not the regular procedure for
training AdaBoost, we are not modifying any of the



assumptions that the algorithm is based on. A simi-
lar application of AdaBoost was successfully demon-
strated by Tieu and Viola [25] in the context of auto-
mated image retrieval.

4. Experimental Results
4.1. Features

In order to validate the techniques described so far we
have performed experiments with both the XUV and an-
other CMU robotic platform. While the two vehicles are
equipped with different sensors and have different geome-
tries, we have used the same approach (described in section
2) to extract information about the scenes. For each patch in
our image grids we have computed the following features:

e Color. The images are converted to the LUV color
space; we extract the mean and standard deviation of
the pixels in a patch for each channel, obtaining 6 color
features.

e Texture. The FFT representation of each patch is com-
puted, and it is then divided into 6 bins for frequency
and 6 for the orientation. The means and standard devi-
ation of the energy in each bin are computed, resulting
in a total of 24 texture features.

e Infrared. The mean and standard deviation of the IR
pixel values for each patch are computed, resulting in
2 IR features. The correspondence between the color
patches (used as reference) and IR patches is estab-
lished using the 3D information provided by the laser
points that project in the color patch.

e Laser (simple statistics). Using the laser points that
project into each image patch we estimate the average
height expressed in the vehicle frame, and the standard
deviations in the XYZ directions relative to the vehicle
frame. This results in 4 simple laser features.

e Laser (Vandapel-Hebert features and classification
[11]). As a good example of a specialized classifier
we might want to incorporate into our system, we have
used an implementation of the technique described in
[11] for terrain classification. The method looks at
the local point distribution in space and uses a Bayes
classifier to produce the probability of belonging to
3 classes - vegetation, solid surface and linear struc-
ture. The method takes as input a sparse set of 3-D
points. At each point the scatter matrix is computed
using a predefined support region. The decomposition
in principal components of this matrix leads to the def-
inition of three saliency features characterizing the 3-

D points spatial distribution as "random”, linear” and

“surface”. We use both these saliencies and the prob-
abilities of belonging to each class, which results in a
number of 6 features. We will refer to these features as
“Laser VH”.

4.2. Experiment 1

The first experiment we will present is based on data
collected with the XUV robotic platform. The vehicle is
equipped with a laser range finder unit, two 640x480 Sony
color cameras and an infrared camera with the same reso-
lution. The laser unit and the cameras are mounted inside a
pan-tilt platform.

We have evaluated the performance of the various fea-
ture sets and the benefit of the different fusion strategies by
attempting to solve a problem that is very important for out-
door mobile robotics: detecting dirt roads. While the road
detection is not an instance of an obstacle detection prob-
lem, notice that our setup is essentially solving binary clas-
sification problems and as such can also be used for terrain
classification.

Figure 1. A typical scene from the road detec-
tion dataset: the color image (top-left), the IR
image (top-right), the 3D point cloud in which
points are colorized based on the colorimage
(bottom).

The data logs used for this experiment were collected at
the ARL Fort Indiantown Gap robotics facility. Each data
log contained color and infrared images, together with ve-
hicle position and range data from the vehicle. We have
used 3 independent datasets (2 merged into the training set,



1 used as a test set). The corresponding images were man-
ually labeled in the two classes of interest. We have only
used image patches that contained laser points, which re-
sulted in 18963/8582 patches in the train/test datasets. The
percentage of road patches was 0.62/0.63.

After labeling the data and extracting the features we
have trained several classifiers on this problem. More
specifically, we compared the performance of neural net-
works trained on subsets of our full feature vector (such as
color, texture, IR, laser simple and laser VH) with the per-
formance of a neural network that has access to the full vec-
tor. We also compared their performance to two of our clas-
sifier fusion algorithms, stacked generalization and commit-
tees of experts. The numerical results are presented in Fig-
ure 2, while Figure 3 presents a graphical representation of
the average error rates.

Name Mean | Std Dev
SG 2.89 0.44
CoE 3.77 0.54
Color 9.45 2.79
Texture 28.73 2.02
IR 12.33 5.22
Laser Simple | 17.33 5.29
Laser VH 11.72 3.13
All Features | 3.19 0.61

Figure 2. Error rates for the road detection
experiments. From the first row down we
have stacked generalization, committees of
experts, and color, texture, infrared, laser
simple, laser VH, and all feature based neural
networks.

In order to estimate the error rates and standard devia-
tions we performed 10 fold cross-validation without prior
randomization of the patches. We chose not to use ran-
domization in order to avoid getting overly optimistic re-
sults: since there is high degree of correlation between
neighboring image patches, splitting them randomly would
lead to unrealistic similarities between the training and test-
ing datasets. We have also performed experiments with
completely separate training and test datasets (i.e. with-
out cross-validation) and the error rates we obtained were
similar to the ones produced by cross-validation.

Overall our results are encouraging: they confirm that
performing both low-level data fusion and classifier fusion
can significantly improve classification performance. The
fact that committees of experts and stacked generalization
performed as well as a neural network that has access to the
full feature vector is very positive. While in this case we
had full access to all the features (including the ones pro-
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Figure 3. Error rates on the road detection
problem. The bars represent in order: (SG)
Stacked Generalization, (CoE) committees of
experts, (COL) Color, (TEX) Texture, (IR) In-
frared, (L_S) Laser simple, (L_VH) Laser VH
and (ALL) all features based neural networks.

duced by the VH classifier) which reduces the importance
of classifier fusion, it is important to confirm that algorithms
like COE and SG can learn to combine input classifiers very
effectively.

It is interesting to notice that the VVH features (which ef-
fectively represent a form of specialized classifier) perform
significantly better than the simple laser statistics, despite
the fact that exactly the same laser points are used as inputs
in both cases. This is a perfect example of why one would
like to be able to fuse several classifiers.

4.3. Experiment 2

The second experiment we present uses data collected
with a CMU developed robotic platform (a large tractor).
The vehicle is equipped with two Sony DFW-SX900 high-
resolution color digital cameras producing 1280x960 im-
ages and two laser range finder units which are based on
mechanically scanned SICK LMS units. At the time the
data logs were recorded the vehicle did not have an IR cam-
era.

The experiment we performed on CMU data used the
same types of features as the ones based on XUV data, ex-
cept for the laser VH and the IR features which were not
available. The cameras and the laser units have perfor-
mance characteristics that are quite different from those of
the XUV sensors. This makes the experiment even more



interesting: we are claiming that using automated learn-
ing makes our fusion techniques applicable to many differ-
ent vehicles and sensor configurations. This is an example
of such an application of the same techniques fusion tech-
niques on significantly different vehicles.

Figure 4. Box plots representing the classi-
fication performance on the obstacle detec-
tion problem. The rectangle for each clas-
sifier represents the interquartile range and
the horizontal line is the median. From
left to right we have the color, texture and
laser based classifiers, the committee of ex-
perts (COM), stacked generalization (SG), Ad-
aBoost (AB CTL) and Most Frequent, a clas-
sifier that always predicts the most frequent
class without using any features.

The problem we attempted to solve in this case was ob-
stacle detection, using a dataset in which the obstacle was
a human walking in front of the moving vehicle in an area
with tall vegetation. To make the problem non-trivial the
human was wearing a camouflage jacket. The raw classi-
fiers were neural networks, this time using color, texture
and simple laser features. The classifier fusion strategies
we compared were stacked generalization, a committee of
experts and the version of AdaBoost we described. The
dataset we used contained 22989 non-obstacle and 2893 ob-
stacle image patches (we used 20x20 patches).

The results presented in Figure 4 were obtained perform-
ing 10 fold cross-validation on our dataset. Since the two
classes (obstacle/non-obstacle) were so unbalanced, we pre-
sented the error rate of a “constant” classifier that always
predicts the most frequent class. Since only 12 percent of
our data represents the obstacle class the reader should be
aware that an error rate of 10 percent does not necessarily

represent good performance.

In this experiment the color classifier performed ex-
tremely well, followed by the laser features and the texture
which was mostly irrelevant. The explanation is that the
vegetation was slightly dry, which made the color of the
camouflaged jacket different from the background. Stacked
generalization and the committee of experts were able to
learn to focus on the color-based predictions and to use the
laser information to slightly improve upon the color perfor-
mance. A t-test based on our cross-validation data showed
this slight improvement to be statistically significant.

The boosting algorithm performed slightly worse than
the best input classifier. Our analysis indicated that the
problem lies in the exponential penalty that AdaBoost
“charges” for small classification margins. The algorithm
focuses on increasing the margin on a small number of very
difficult training examples while actually reducing the mar-
gin of the others; as a result, its generalization performance
is reduced. A solution to this problem would be to use “soft-
margin” AdaBoost variations such as the one described in
[18].

5. Conclusions

We have presented a system that uses multisensor data
fusion at both the pixel level and the classifier level in
order to improve obstacle detection performance for out-
door mobile robots. Our experiments —on different plat-
forms, sensors and feature configurations— confirm the in-
tuition that combining data from multiple sensing modal-
ities can dramatically improve classification performance.
Furthermore, we have shown that automatically combining
different classifiers in order to leverage on their particular
strengths and provide performance that is better than that of
any classifier in the pool is possible. We anticipate that this
type of approach will have important applications in mo-
bile robotics. We will continue our experiments in order to
analyze the performance of our system on different classifi-
cation problems and with more complex classifier combina-
tion schemes such as hierarchical mixtures of experts [12].

The weakest link of our current setup is the fact that we
rely on supervised learning. Labeling data for large scale
problems is tedious and expensive, and we are currently de-
veloping active learning solutions for alleviating the data
labeling requirements. The main direction of our effort is
to adapt anomaly detection techniques from the data min-
ing field to our domain, but we are also experimenting with
methods such as the one described in [19] to iteratively
select the next “most informative” data to label. Since in
most robotics applications it is usually inexpensive to col-
lect very large amounts of unlabeled data, we believe that
active learning has the potential to open numerous new pos-
sibilities for the successful application of machine learning



in robotics.
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